pharmaceutical chemistry 3rd stage lec. 3 Dr. Leaqaa

Acid —Base properties :

** greatly influence its <u>biodistribution</u> and <u>partitioning characteristics</u>.

Acid + Base = Conjuate Acid + Conjugate Base

- Lowry and Brønsted.
- * proton donor (acid) and
- * proton acceptor (base) (charged or uncharged)

Acid-Conjugate Base

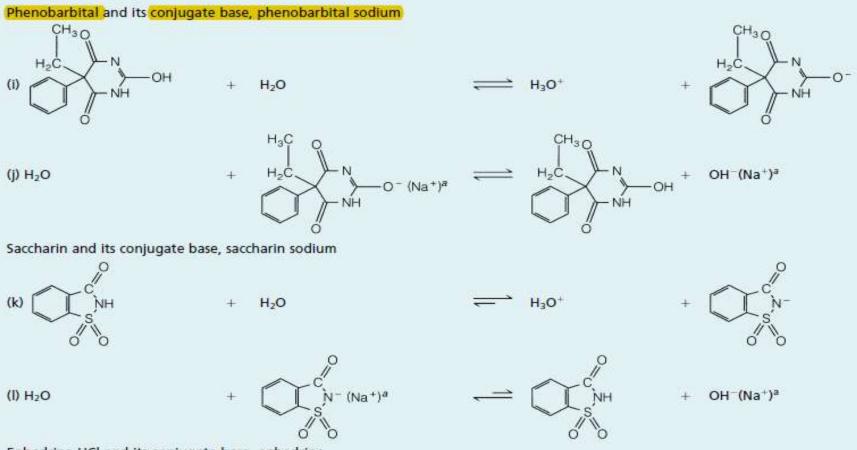
Table 2-1.

* Each acid, or proton donor, yields a <u>conjugate</u> <u>base</u>.

$CH_3COOH \xrightarrow{\kappa_{eq.}} CH_3COO^- + H^+$

Base-conjugate acid:

table: 2.1


each base ,yield conjugate acid (product produced from the addition of a proton to the base)

$$NH_3 + H + H + NH_4$$

Conjugate acid

Representative <u>examples of pharmaceutically</u> <u>important drugs</u>

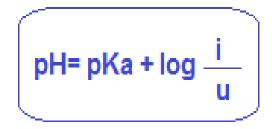
Acid	+	Base	=	Conjugate Acid	+	Conjugate Base
Hydrochloric acid						
(a) HCI	+	H ₂ O	\longrightarrow	H ₃ O ⁺	+	CI-
Sodium hydroxide						
(b) H ₂ O	+	NaOH	\rightarrow	H ₂ O	+	OH-(Na ⁺) ^a
Sodium dihydrogen pho	sphate and it	s conjugate base, sodium	monohydrogen	phosphate		
(c) H ₂ PO ₄ (Na ⁺) ^a	. +	H ₂ O	÷,	H ₃ O ⁺	+	HPO42-(Na+)a
(d) H ₂ O	+	HPO42-(2Na+)a	$ \longrightarrow$	H ₂ PO ₄ ²⁻ (Na ⁺) ^a	+	OH-(Na ⁺) ^a
Ammonium chloride and	d its conjugat	e base, ammonia				
(e) NH ₄ +(Cl ⁻) ^a	+	H ₂ O	<u> </u>	H ₃ O ⁺ (Cl ⁻) ^a	+	NH ₃
(f) H ₂ O	+	NHa	\equiv	NH4 ⁺	+	OH-
Acetic acid and its conju	gate base, so	dium acetate		CARGE C		
(q) CH ₃ COOH	+	H ₂ O	<u> </u>	H ₃ O ⁺	+	CH3COO-
(h) H ₂ O	+	CH ₃ COO ⁻ (Na ⁺) ^a	=	CH3COOH	+	OH-(Na ⁺) ^a

Indomethacin and its conjugate base, indomethacin sodium, show the identical acid-base chemistry as acetic acid and sodium acetate, respectively.

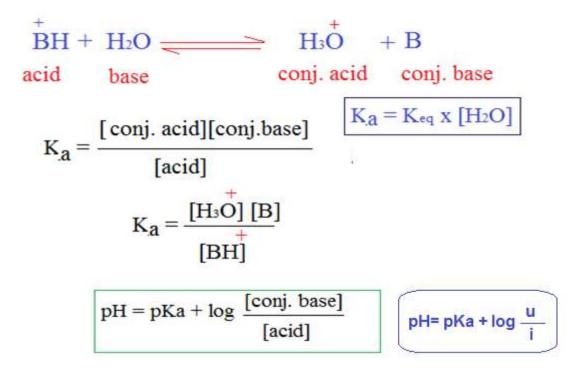
Enhadeling LICL an

Acid Strength

* ability of acid to give proton as table, to indicate which sequences are unidirectional or show only a small reversal.


*The information of acid strength is given by pka.

pKa = -log ka


HA + H₂O
acid base
$$H_3O$$
 + \overline{A}
conj. acid conj. base
 $K_a = \frac{[conj. acid][conj. base]}{[acid]}$
 $Ka = K_{eq} x [H_2O]$

pH= pKa+ log [conj.base]/[acid]

*hinderson-Hasselbalch eq.

A very similar set of equations is obtained from the reaction of a protonated amine BH⁺ in water.



What about weak bases & weak acids in aqueous solutions.

- using the relationship in Equation:

pKa + pKb = 14

It is now more common to express the basicity of a chemical in terms of pka .since pka for a base is in reality the of the conjugate acid of base (acid donor 9.3 or protonated form, BH ⁺), e.g. $NH_3 \rightarrow pka=9.3$

* A general rule for determining whether action is strong or weak acid or base:

- pKa < 2
- pka = (4-6)
- pka = (8-10)
- pka > 12

- the pka give indication of the acid property not represent anything else.e.g. potential toxicity ex:
- * Phenol (pKa = 9.9)
- ephedrine HCI (pka=9.6).
- phenol \rightarrow corrosive to the skin,
- ephedrine HCI \rightarrow save when applied to the skin.

Why???

Percent Ionization

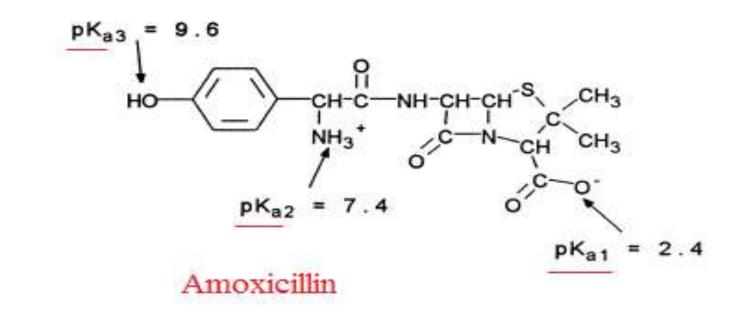
- * pKa \rightarrow important for formulation
- acid can be divided into 2 types :
- 1. HA (un-ionized) ex: [inorganic acid (HCl, H₂SO₄), Enols

СООН

amides and imides

2. BH⁺ (ionized) : all protonated amine

 $\begin{array}{c|c} HA_{(un-ionized)} + H_2O \equiv H_3O^+ + A^-{}_{(ionized)} \\ \hline Acid & Base & Conj. & Conj. \\ & Acid & Base \end{array}$


 $\begin{array}{cccc} BH^+{}_{(ionized)}+&H_2O \equiv H_3O^++&B_{(un-ionized)}\\ \mbox{Acid}& Base & Conj. & Conj.\\ & Acid & Base \end{array}$

A polyfunctional drug can have several pKa's (e.g., amoxicillin).

at physiological pH 7.4.

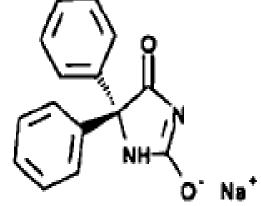

-COOH [HA] acid, pka=2.4), \rightarrow ionized

- NH₂ [BH⁺ acid;pka2=7.4]
- phenol[HA acid,pka3=9.6

The % ionization of drug is calculated by using Equation for both HA acids and BH⁺ acids. Respectively

* pH> pka = ionized * PH< pka * $\underline{pH=pka}$ % ionization = $\frac{100}{1+10^{(pK_a-pH)}}$ % ionization = $\frac{100}{1+10^{(pH-pK_a)}}$

n can be omethacin und is 50%


Percent Ionized versus pH for indomethacin & ephedrine

	Ionization (%)		
	HA Acids	BH [.] Acids	
pKa - 2 pH units	0.99	99 0	
pK _a 2 pH units pK _a 1 pH unit	9.1	90 9	
$pK_a = pH$	50 0	50.0	
pK _n + 1 pH unit	90.9	9.1	
$pK_a + 1 pH unit$ $pK_a + 2 pH units$	99.0	0.99	

TABLE 2–6 Percentage Ionization Relative to the pKa

-predict why the use of some preparations can cause problems and discomfort as a result of pH extremes. Phenytoin(HA acid: pKa= 8.3) injection must be adjusted to pH 12 with NaOH

<u>In theory, a pH of 10.3</u> will result in 99.0% of anionic water-soluble conjugate base.

Phenyloin Sodium

This decrease in pH would result in the parent unionized phenytoin precipitating out of solution.

* To predict chemical stability problems

e.g. indomethacin (HA acid: pKa=4.5), which is unstable in alkaline media. So oral liquid dosage form (suspension) buffered at pH 4 – 5 .~ 50% be in the watersoluble form.so can not prepare as i.v.

Drug Distribution and pka

The pKa can have a pronounced effect on the pharmacokinetics of the drug, including the distribution

1-

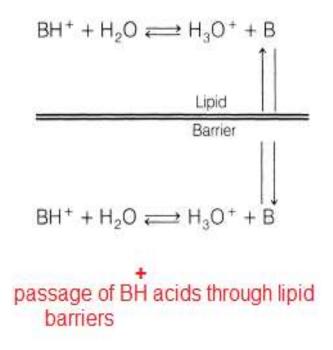
* drugs in an ionized form will tend to distribute throughout the body more rapidly than will unionized (nonpolar) molecules.

*the drug must leave the polar environment of the plasma to reach the site of action.

2-

* In general,

non polar membranes of capillary walls ,cell membrane & BBB in in unionized (non polar) form


= for HA acid.

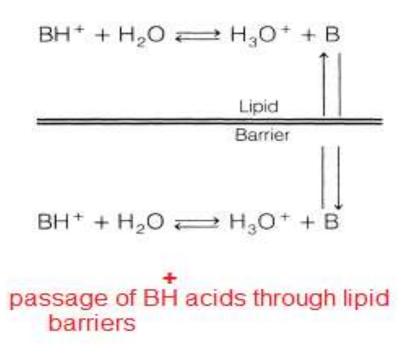
 $HA + H_2O \iff H_3O^+ + A^ HA + H_2O \iff H_3O^+ + A^ HA + H_2O \iff H_3O^+ + A^-$

Passage of HA acids through lipid barriers

* BH⁺ acids:

The un-ionized conjugate base (Free amine) is the species most readily crossing the nonpolar membranes

So


* ionized form of drug will be mainly distribute
* un ionized form will be passage through the membrane.

3* Changing the pH Enviroment:
For orally ,administered drug:

acidic stomach, pH range 2 - 6 depending ???

A) HA acids with <u>pKa</u> $_{\rm s}$ of <u>4 - 5</u> will tend to be <u>nonionic</u> and be <u>absorbed partially through the gastric mucosa</u>. why most acidic drugs are absorbed from the intestinal tract rather than the stomach ??

amines (pKa= 9 - 10) will be protonated (BH⁺ acids) in the acidic stomach and usually will not be absorbed until reaching the mildly alkaline intestinal tract pH — 8).

* plasma pH = 7.4

determinants of whether the drug will tend to remain in the aqueous environment of the blood or partition across lipid membranes into :

- * hepatic tissue \rightarrow metabolized,
- * kidney \rightarrow excretion,
- * tissue depots,
- * the receptor tissue.

-depending on the ratio [conj.base]/[acid] according on henderson-hasselblach eq. or % ionization